
SOA AND REST Synergistic Approach
Navdeep Dahiya1, Neha Parmar2

1 IBM India Pvt. Ltd, Uttar Pradesh, India
 2 makemytrip.com , Haryana, India

Abstract— APIs are everywhere, reusability, resource-
sharing, monetization counter for their ubiquitous nature. The
true value of an API comes from lifting the business beyond
the walls of an enterprise by delivering business solutions to
the partners, expanding the customer base, building a
community around a brand, driving more traffic towards a
website, acquisition of other businesses. With APIs, business
gains power with content and data ownership . The business-
driven nature of APIs and the increasingly reliable Web
services and cloud-based applications, have truly become one
of the most crucial elements in the process of gaining
businesses the momentum they never had. APIs are
revolutionizing the world of IT by making it possible for
developers to connect myriad applications to accelerate
strategic business execution. We have been using services to
define business functionality or business process were defined
in terms of services. SOA had its hand in the development of
such rife architectures. Providing a single point for
applications to access services bolstered business a lot. With
more and more technological standards being defined. It is
becoming really one of foremost decisions that businesses
should understand and choose to make as to which
architecture they want to base their services on.
In this paper we discuss about how to build a platform for this
growing ecosystem?
What should be architectural components for building such a
stronger system?
What all technology components should be involved? How we
should organize these components?
What are the main differences between service and resource
based architectures? Is ROA future of interoperability?

Keywords— API, Services, Resource- Orientation, REST,
RESTful services, SOAP and WS-*.

1. INTRODUCTION

A successful API must offer a value to those who are
going to use it and to the enterprise offering it. With the
concept of programmable web becoming more and more
popular, new APIs are published every day. Few most
coveted features of an API might be:

• Stability
• Layered Systems
• Security and Authentication
• Fast Responses
• Uniform Interfaces
• Appropriate to audience
Since public APIs are forever, design for these should be

robust, scalable, evolvable and modular. SOA use to drive
this effective API design [1]. SOA is more than merely a
technology. It offers a strategic way to support business
agility. Business concerns today in the area cover from
discovery of services, definition, design, deployment and
publishing of the composite and atomic services. With the
advent of REST it is now thought that REST is the future of

SOA. Very first assertion here would be that REST is also
just an architectural style of developing resources of web as
SOA does by providing services. In this paper we try to
corroborate a dispassionate outlook on both styles of
application development. We will discuss if both are
emerging as competitors, or both are working towards a
bigger unified whole.
Forthcoming sections in this paper are given to see how can
we initiate the process of setting up business services using
the two approaches.
In upcoming section we discuss the architectural
components and their relationships to each other—as well
as to core SOA application components available for APIs.

Fig. 1: SOAP AND RESTful COMMUNICATION

2. LITERATURE REVIEWED

SOA architecture mainly emphasized decomposition of
business function into smaller more manageable
components thus simplifying business processes. Doctrine
of SOA architecture advocates [1,5, 9]:

• Defining repeatable business task/functions, that is
a smallest independent task in an otherwise
complicated business service.

• These functions then collaborate to solve a basic
business problem which might be an aggregation
of many smaller business functions, these are
called services.

• A architectural style based on Service Oriented
principles, consists of thoughtfully defined
reusable business services address commonest of
business concerns.

• This decoupled way enables externally developers
to be able to use these services using their simple
interfaces [11].

As opposed to this REST has two main approaches: true
REST and RESTful technology approach for defining
services. REST is an architectural suite that promulgates
guidelines for organizing services. ROA (Resource-

Navdeep Dahiya et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 5 (6) , 2014, 7045-7049

www.ijcsit.com 7045

Oriented architecture) is based on resources. It defines
decoupled distributed components handled through a
common interface.
Most important question here is, how are services and
resources different in that respect.
A service is a smallest business process, independently
developed, deployed, managed, and maintained software
program providing business functionality for an enterprise
as a whole and is open by design. It can be described like
searchItem(String itemkey);. Functionality is exposed
through an interface discoverable by the outsiders.
Resources on the other hand are directly accessible,
deployed, managed software artifacts providing specific
information or data.
With REST different operations can be defined on HTTP
operations as follows [5]:

• createData - Create a new resource (and the
corresponding unique identifier) - PUT

• getDataRepresentation - Retrieve the
representation of the resource – GET

• deleteData - Delete the resource DELETE
• modifyData - Modify the resource – POST
• getMetaInformation - Obtain meta information for

the resource - HEAD
Resources are accessed using URI.

2.1 Difference between REST and SOA

As follows from the discussion above SOA and
REST are very different methodologies.

If Web services areas the RPC of the Internet,
REST is the DBMS of the internet [4]. Traditional SOA
based integration visualizes different software processes
being able to interact with each other through methods i.e.
using object oriented concepts. REST effectively allows
each software artifact to behave as a set of tables, and these
processes talk to each other using SELECT, INSERT,
UPDATE and DELETE. (GET, PUT, POST, DELETE).
Having said that ROA and SOA are very different
architecture which will seldom be developed together [2,3].
However a unified approach is possible utilizing RESTful
resources which we will analyse in the next section.

2.2. REST COMPATIBILITY WITH SOA

The REST Web Service approach is what is being
adopted these days. The REST Web Service approach uses
REST only as a communication technology to build SOA.
Services will be defined using SOA style decomposition
and REST-based Web Services are used as a transport.
REST Web Services have nothing to do with true REST
and is similar to how services communicated using XML
over SOAP with only difference that it supports multiple
other data types ranging from JavaScript Object Notation to
binary blobs and leverages additional HTTP methods,
which is commonly based on GET and PUT [3]. JSON
became popular due to advancement in AJAX technology
on the client side. This way rest provided a better way for
providing services to heterogeneous platforms like android,
java web applications, .Net Applications. Among the other
differences between SOAP and REST is that while REST is
implemented directly on top of the HTTP protocol, SOAP

introduces heavy SOAP messages for communication to the
services. Although both have their merits, trying to limit
SOA implementation to a single transport – HTTP, isn’t
really a good idea [12].

Fig.2: Concise comparison on the communication

formats of web, reason for increasing REST usage is apparent.

With REST both requests and responses can be

short. Reasons for this are that SOAP messages are
wrapped by XML envelope around every request and
response, thus increases the size of a message [3]. The
important thing to consider here is not how much size the
envelope adds, but rather the portion of overhead it creates.
Since the message envelope size remains the same, impact
of overhead decreases as the size of the message grows,
eventually becoming negligible. For larger requests the size
of the request and response is quite large and consequently
the overhead of a SOAP envelope will not pose a
problem[13]. Also, REST, provides a lightweight
messaging alternative – JSON.

2.3. Aligning API development
Determining the architecture for a robust API Infrastructure
one should devise a business strategy from SOA
development to development of APIs. The strategic steps
might vary from enterprise to enterprise.
The basic steps that form the backbone for any business
might comprise the following:

Navdeep Dahiya et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 5 (6) , 2014, 7045-7049

www.ijcsit.com 7046

• Identify and document your business tasks at
grass-root level.

• Establish business function ownership, funding,
reporting and analytics.

• Build modular services in a way that services can
be reused.

• Catalogue information about services like, terms
and conditions of usage, security requirements.

• Set up an integration framework for use by
business partners.

• Devise policies that make your keep your business
services secure and reliable.

• Monitor and analyse usage patterns, any access
attacks, service performance , etc., to ensure
business functions availability, relevance and
returning business value.

• Manage the business functions within portfolios,
separating differing business concerns and thereby
guiding where to invest and how to maximize
business return, as well as how to make your
business more agile.[8]

2.4. Technological architecture for APIs
Service Oriented Architecture is a design pattern in which
all business functions are modelled in a way to keep them
independent. This loosely coupled code enables
applications to be developed from these services from time
to time. Developers can create new services whenever
business needs just by congregating these smaller business
components. Main idea of Service Oriented Architecture is
that an organization can extend its services at any point of
time as and when business demands since creating a new
service becomes as simple as reusing existing services to
accomplish a business task. The Service Oriented principles
enable services to be reusable, flexible and open for
enhancement. With uniform interfaces (using which
services are accessed) and modular design implementation
keeps both publishing/exposing of services and their
internal implementation totally decoupled so that any
changes to the services will not impact any external user as
long as the service contract remains the same as partners
will always use these services using exposed interfaces.
This interoperability can be ensured by adhering to open
technologies. Interoperability is challenging because Web
services protocols for message exchanges, reliability and
optimizing services are varied and services may be hosted
on adverse platforms. Without a platform designed around
standards and aimed at interoperability, it is impossible to
quickly bind services together to meet continually changing
business requirements or agility. Quality of service
protocols optimizations will be needed as independent
infrastructure as cross cutting functions that can be enabled
independent of business logic and the implementation
strategy for services. The key standards to support this are
the Service Component Architecture and JAX-WS.[14,11].
In the next section we illuminate cardinal rules or standards
and open technologies for optimizing architecture providing
highly available, real-time, reliable services.

2.5. Basic Requirements of SOA
This paper is emphatic about choosing best of the different
approaches available for interoperable open services. We
jolt down some basic requirements here[5]:
Messaging: Clear and interoperable standards for
establishing communication between services are the basis
for interoperability. For services to communicate with each
other, messages are en-coded according to the SOAP
standards 1.1 and 1.2 specifications, and typically sent over
HTTP. With RESTful resources as discussed above we will
be able to utilize http for communication.
Service description and discovery: Services published
should be available to external developers for location and
discovery. Description should be adaptable to a variety of
formats and platforms. Using API gateways or other
available solutions are a good bet here.
Implementation: Loosely coupled code is always
appreciable and extensible, keeping services ready for the
future.

2. SOA Advance Infrastructure Requirements
The demands put on SOA to ensuring availability,
scalability, reliability and optimization of SOA-based
services and applications. Infrastructure services required
to support these are[7, 9, 8,10] :
TCP Connection management: TCP Multiplexing reduces
the impact of huge calls placed by SOA or WEB. This also
improves performance by removing the overhead of
switching involved in opening and closing multiple TCP
sessions (connections) between the client and the server.
Load Balancing: High Availability of a service is an ability
of the system to be able to continue to perform even when
down with component failure. Not only this, services
should also respond in specified amount of time.
Availability can be achieved by distributing load amongst
multiple data centres or by providing failover capabilities to
address calls when one site is inaccessible or goes down so
that these calls can be routed to some secondary site that
acts as the failover capability.
Advance health monitoring services: Advance health
monitoring capabilities include the ability to dynamically
define routing decisions based on the message returned.
Many health check services use general “ping” based
services to alert when the server stop responding or if its
efficiency drops by a pre-specified threshold that alarms the
developers to take necessary action of rebooting or taking
measures to bring loads and its performance in place.
Optimization: Optimization includes the implementation of
protocol-specific standard enhancements that increase the
performance of core protocols such as TCP and HTTP.
It can be performed by offloading certain resource critical
operations such as SSL encryption and decryption from
services to the infrastructure or through the using
compression technology to reduce the total size of
messages. XML-based messages are particularly well suited
to compression because they are text-based. Infrastructure
extensibility could be a major step in optimization but with
so much boom in cloud computing these days systems can
leverage from available infrastructure services on the fly as
needed.

Navdeep Dahiya et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 5 (6) , 2014, 7045-7049

www.ijcsit.com 7047

Logging/Auditing: Logging is writing the details of events
happening in an application to a persistent store. Logging
can be about recording normal events as well as abnormal
events such as errors or exceptions. The purpose of logging
is mainly from the operations perspective to get the
operational metrics as well as to help ensure a service-level
agreement (SLA). It also gives ways to set up monitoring
and analytics for services. Persistent store where audits can
be maintained might be databases or memcached as it
suitable for the enterprise.

3. REST AND SOA INTEGRATION
By now we understand that REST and SOA both are
architectural styles for designing networked applications
targeting slightly different aspects which together are going
to set the stage for ROA (REST Oriented Architecture) with
more secure, simple, reliable APIs. The idea is that, rather
than using convoluted conventional mechanisms such as
RPC or SOAP to connect between machines, calls between
machines are made through simple HTTP. This being
lightweight, enhances the efficiency and evolves as an
alternative to Web services[6]. Let alone protocol usage,
ROA chooses best of the two areas and thus will definitely
revolutionize APIs for good. We discuss below the
constraints imposed below by REST and identifying their
suitability in the current SOA setting [3, 2,10].

3.1. REST Principles and Constraints:
Client - Server Communication: Keeping internet
protocols, exchange formats common so that diverse client
platforms can easily connect to server-side resources. This
can be achieved using RESTful services as they support a
good range of messaging formats for communications.
Stateless Communication: No state is stored at the server,
Client request contains all the information to process the
requests. RESTful system mark data as cacheable.
Cacheable data decreases network traffic and reduces back-
end system load. For making the system the data might be
cached to serve repeated traffic for similar requests. In
order to utilize REST Developers should defer from storing
anything shared by the client.
Uniform interfaces: In order to scale up to enormous web
of interfaces and services in the internet using simple and
uniform interfaces is the key to integrate with both more
resources and more users. It decouples the architecture
enabling each part to evolve independently. Web developer
and Web API administrator both need not worry about the
issue that otherwise might create a havoc.
Layered System: An API Facade hides internal
implementation complexity, and presents a simple interface
to external consumers. Simple RESTful API interfaces hide
multiple back-end databases and aggregated services.
Exposing complex back-end services to Web standards like
HTTP could be cumbersome job for enterprises. API
Facade gives a simple pattern for publishing complex APIs.
It gives buffer or virtual layer between the interface on top
and the API implementation on the bottom. API endpoints
are lightweight proxies enforcing the security, monitoring
the usage, and shaping the traffic. The proxy facilitates a

clear separation of concern between consumer interface
contract and back-end service implementation.
The constraints allow beneficial properties to emerge,
namely simplicity, scalability, modifiability(agility in the
underlying system), reliability(Through failover
mechanisms or ensuring high availability), visibility(Use of
open interfaces), performance(Load balancing
dynamically), and portability. RESTful APIs are created
when services are to be offered outside of native application
domain to a larger consumer base out of an enterprise. Like
SOA, REST is an architectural discipline defined by a set of
design principles, and a set of architectural constraints is
also imposed by REST. A resource-centric model is used in
REST; resource-centric model is the inverse of an object-
centric model . In REST, every thing of interest is a
resource. When modelling a RESTful service, the service's
capabilities are encapsulated and exposed as a set of
resources.

4. PROTOCOL SUPPORT AND USAGE

Fig. 3: Above two charts show data statistics collected by
Programmable web to study patterns in protocol usage and
adoption overtime, it can be seen RESTful resource as being
welcomed to a good extent.

Navdeep Dahiya et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 5 (6) , 2014, 7045-7049

www.ijcsit.com 7048

5. CONCLUSION AND FUTURE SCOPE
ROA can be thought of a strategy to align IT assets with
business capabilities in a RESTful manner, thoughtful
designing of strategic components utilising the best of both
SOA and REST prove to be a good investment.
 SOA’s strong focus on sharing and re-use can optimize IT
asset utilization and REST focus on extensibility and secure
ways of communicating to external systems, together might
prove a great tools for enterprises. Most intriguingly, ROA
is supposed to re-invent business-to-business interactions,
enabling even better partner relationships, and that it did
quite efficiently, that will also address the main concerns in
the area that is how these services be available on diverse
platforms and to all the external developers to seek to use
existing APIs and support the process networks. External
services became a mechanism to extend an enterprise’s
ecosystem extension by reducing the cost of interaction,
incorporating the external business capabilities, enabling
the business specialization, and creating solutions of higher
value that extend business processes across a partner
network.
API-centric Enterprise organizations reach more customers
and generate greater business revenue, build better brand
value. APIs facilitate interconnecting business processes
across the extended value chain. Customers, distributors,
suppliers and partners can readily tap into a business
capability which is offered as an API, and increase the
business interaction over the API channel [6]. API-centric
Enterprises move beyond destination ecommerce to
embrace decentralization, personalization,
contextualization, ramification, and dynamic distribution
channels. Technology trends incorporating these concepts
include mobile, machine-to-machine, person-toperson, and
business-to-developer channels. In each case, APIs are the
connecting channels across distributed solution actors and
components.
Open systems pose a heavy requirement for secure
transactions. REST can be employed to achieve these
transaction. Provided APIs are bound to evolve over time, a
clear definition should be provided as to how business are
going to deprecate existing service or redirect to the one's in
place. Implementing ROA remains a big challenge but
businesses need to pay heed to the ways they can make
their businesses more agile [13]. With this investment
developing application will become really easier, with less
amount of care needed by API administrators. As far as
statelessness is concerned it quite obvious that some
complex APIs perform some huge computations and might
keep this data for future, if data needs to be saved business
objects should be defined in such a way that no data is
compromised. The extra burden on developers part is worth
the effort because it confers agility and lowers platform
choke-in and will impart improved strength to API
Economy.

REFERENCES
[1] Md Tanvir Ahmad, Prof. M. Afsar Alam, Shah Imran Alam. "SOA

Approaches Analysis and Integration with Emerging GUI"
[2] James Nahon. "A Comparative Analysis of REST and SOAP"
[3] Roberto Lucchi, Michel. "Resource Oriented Architecture and

REST"(http://inspire.ec.europa.eu/reports/ImplementingRules/networ
k/Resource_orientated_architecture_and_REST.pdf)

[4] (http://blog.dhananjaynene.com/2009/06/rest-is-the-dbms-of-the-
internet)

[5] Lori MacVittie - "SOA Infrastructure Reference Architecture:
Defining the Key Elements of a Successful SOA Infrastructure
Deployment"

[6] Haddon Hill Group – “API Management & Convergence with SOA”
[7] "Accelerating API Adoption through Lifecycle Management"
[8] Mulligan, G. , Gracanin, D., IEEE “A comparison of SOAP and

REST implementations of a service based interaction independence
middleware framework”

[9] (http://www.oracle.com/technetwork/topics/next-generation-soa-
infrastructure-132959.pdf - Next-Generation SOA Infrastructure)

[10] Brian Mulloy - “API Façade pattern”
[11] (https://www.f5.com/pdf/white-papers/soa-infrastructure-reference-

wp.pdf)
[12] David Chappell – SOAP vs REST: Complements or Competitors
[13] Springer - WonSeok Lee,Cheol Min Lee,Jung Won Lee,Jin-soo

Sohn - “ROA Based Web Service Provisioning Methodology for
Telco and Its Implementation”

[14] Gavin Mulligan and Denis Gracanin – “A COMPARISON OF SOAP
AND REST MPLEMENTATIONS OF A SERVICE BASED
INTERACTION INDEPENDENCE MIDDLEWARE
FRAMEWORK”

Navdeep Dahiya et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 5 (6) , 2014, 7045-7049

www.ijcsit.com 7049

